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Abstract
We introduce a gauge invariant and string independent two-point fermion
correlator which is analysed in the context of the Schwinger model (QED2).
We also derive an effective infrared worldline action for this correlator, thus
enabling the computation of its infrared behaviour. Finally, we briefly discuss
the possible perspectives for the string independent correlator in the QED3

effective models for the normal state of HTc superconductors.

PACS numbers: 12.20.−m, 11.15.−q

1. Introduction

In the last few years, renewed interest in the study of quantum electrodynamics (QED) in
lower dimensions (2D and 1D) has been observed. One of the reasons is that several models
of strongly correlated electrons are described in terms of fermions coupled to gauge fields.
For instance, one promising model for the pseudo-gap phase of an underdoped cuprate system
is based on a 2D gauge theory [1, 2]. More precisely, this model describes the low energy
fermionic excitations of a d-wave superconductor in such a way that the nodal quasi-particles
are associated with massless Dirac fermions interacting with a gauge field, which represents the
phase fluctuations of the superconductor gap. Vortex phase configurations play an important
role in the dynamics of the model, after a coarse graining process they lead to a partition
function coinciding with that of noncompact, parity conserving QED3 [3].

In the above-mentioned systems, the absence of quasi-particles above the critical
temperature Tc, observed in ARPES and tunnelling experiments, suggests that the electron
(hole) propagator has a Luttinger-like behaviour [1],

G̃e ∼ �p
|p|2−η

(1)

where η > 0 is the anomalous dimension that controls the infrared (IR) behaviour. Note that,
in configuration space, a positive η corresponds to an electron propagator with a decaying
behaviour which is faster than the noninteracting one (η = 0).
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Whether the non-Fermi liquid behaviour (1) is verified or not in the QED3 model is a
nontrivial problem, since a detailed relationship among real electrons or holes and QED3

fermions is unavailable. As a consequence, in the recent literature, a few proposals for the
electron propagator have been introduced. In [1, 4], the authors showed that an important
requirement is that this propagator should be gauge invariant. In particular, they considered
the correlator

G(x − y, γ ) = 〈ψ(x) eie
∫
γ

dxµAµ ψ̄(y)〉 (2)

where γ is a straight line running from x to y.
A nonperturbative calculation of the anomalous exponent η for the correlator (2) is a

very hard task, while most perturbative approaches are very difficult to control, giving rise
to some conflicting results about this parameter [1–7]. In fact, some of these calculations
indicate a negative η, invalidating the interpretation of (2) as the propagator for electron
modes with repulsive interactions [4–7]. This led to the search for other candidates to
represent this propagator, such as the two-point correlation function of the nonlocal operator
ψ(x) exp i∂−2(∂.A) [6], or to look for anomalous non-fermionic response functions [8].
However, the identification of a proper correlator to represent the electron propagator still
remains an open problem (see the discussion in [7]).

In this work we shall consider the following gauge invariant, string independent two-point
fermion correlator

Ginv(x − y) =
∫

[dγ ]〈ψ(x) eie
∫
γ

dxµAµψ̄(y)〉 (3)

where
∫

[dγ ] represents the integration over classes of strings, running from x to y, which are
equivalent under reparametrizations. Our aim is to present a detailed computation of the IR
behaviour of (3) in the simpler and more tractable case of the Schwinger model [9]. This is
motivated by the following reasons.

Firstly, in QED2 as well as in QED3 the coupling constant is dimensionful, so that in both
cases there is nothing to prevent the correlator (2) from a dependence on the shape of the
string γ . Then, in both cases the string integration in (3) will produce nontrivial modifications
with respect to (2).

Secondly, in [6], the negative value of η for the QED3 string dependent correlator (2) was
compared to the situation in QED2, where this correlator also displays an anomalous negative
exponent (see equation (53)).1 Then, by studying the effect the string averaging has on the
IR behaviour of the string independent correlator in 1D, we expect to shed some light on the
behaviour this correlator could possibly display in the physically relevant 2D case.

In 1D, unlike the 2D case, there is a great simplification as (2) can be computed exactly
for an arbitrary string γ . In this way we can concentrate on obtaining an effective IR string or
‘worldline’ action for γ , and then on studying the effect the worldline path integration has on
the correlator. In section 2, we review the calculation of the fermion two-point Green function
by means of the decoupling technique. In section 3, we compute the effective IR worldline
action in QED2. The IR behaviour of the gauge invariant, string independent correlator
is presented in section 4, while the worldline path integration is detailed in the appendix.
Section 5 is devoted to the presentation of our conclusions and to the discussion of possible
perspectives for the case of QED3.

1 Note, however, that the QED2 correlator is not singular at p = 0, because of the dynamical mass generation for the
gauge field.
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2. Two-point QED2 fermion Green function

As a warm up, and in order to present our conventions, we review in this section the decoupling
technique for the computation of the Schwinger model Green function [10, 11],

GSM(x − y) = 1

N

∫
[dψ][dψ̄][dA]ψ(x)ψ̄(y) e− ∫

d2x′LSM (4)

LSM = −ψ̄(i�∂ + e�A)ψ + 1
4FµνFµν. (5)

We work in Euclidean space, and consider a representation where γ5 = σ3. In the Lorentz
gauge, the gauge field can be written according to Aµ = −(1/e)εµν∂νφ. The fermion
and gauge degrees of freedom can be decoupled by means of a chiral change of variables,
ψ = eγ5φχ, ψ̄ = χ̄ eγ5φ , that is,

ψ =
(

ψ+

ψ−

)
=

(
eφχ+

e−φχ−

)
ψ̄ = (

ψ
†
− ψ

†
+

) = (
eφχ

†
− e−φχ

†
+

)
. (6)

In terms of the new variables we have

LSM = −χ̄ i �∂χ +
1

2e2
φ∂2∂2φ (7)

and the fermion correlator reads

GSM(x − y) = 1

N

∫
[dχ][dχ̄][dφ] eγ5φ(x)χ(x)χ̄(y) eγ5φ(y)JF (φ) e− ∫

d2x′LSM (8)

where JF is Fujikawa’s anomalous Jacobian [12]:

JF (φ) = e− 1
2π

∫
d2x′∂µφ∂µφ. (9)

This corresponds to a regularization where the gauge symmetry

ψ(x) → eiη(x)ψ(x) Aµ → Aµ +
1

e
∂µη (10)

is preserved at the quantum level.
The different components of the matrix in (8) have the form

1

N

∫
[dχ][dχ̄]χ±(x)χ

†
±(y) e

∫
d2x′χ̄ iγµ∂µχ

∫
[dφ] e±φ(x)∓φ(y) e− ∫

d2x′ 1
2 φÔφ (11)

where

Ô = ∂2∂2

e2
− ∂2

π
. (12)

The diagonal components vanish, as they involve χ+χ
†
− and χ−χ

†
+ correlations. On the other

hand, the φ-factor associated with the off-diagonal components is the same for both χ+χ
†
+ and

χ−χ
†
− correlations. Therefore, performing the Gaussian path integral the well-known result is

obtained,

GSM(x − y) = SF (x − y) eβ(x−y) (13)

where SF is the free massless Dirac propagator and

β(x − y) = [O−1(0) − O−1(x − y)] ÔO−1(x) = δ(2)(x) (14)

O−1(x) = π
[
e2

π

(x) − 0(x)
]

(∂2 − µ2)µ2(x) = δ(2)(x). (15)

Note that O−1(0) can be absorbed by means of a wavefunction renormalization. For large |x|
the massive Green function decays exponentially, while 0(x) = (1/2π) ln |x|. Therefore,
the asymptotic behaviour of the fermion correlator in the Schwinger model is (see [13]),

GSM(x) ∼ �x
|x|3/2

. (16)
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3. Effective IR worldline action for QED2

Let us consider the gauge invariant, string dependent correlator (2) for the Schwinger model,
that is,

GSM(x − y, γ ) = 1

N

∫
[dψ][dψ̄][dA]ψ(x) eie

∫
γ

dx′
µAµψ̄(y) e− ∫

d2x′LSM (17)

where γ is a smooth open string running from x to y. Using decoupling techniques, this
correlator has been computed for a straight line in [14, 15]. Again, the only nonvanishing
components in (17) are the off-diagonal ones. For instance, the component containing the
ψ+ψ

†
+ correlation function reads

1

N

∫
[dχ][dχ̄]χ+(x)χ †

+(y) e
∫

d2x′χ̄ iγµ∂µχ

∫
[dφ] e

∫
d2x′[n−iεµν∂µjν ]φ(x′) e− ∫

d2x′ 1
2 φÔφ (18)

where

n(x ′) = δ(2)(x ′ − x) − δ(2)(x ′ − y) jµ(x ′) =
∫

γ

dx ′′
µ δ(2)(x ′ − x ′′) (19)

and N = NχNφ , with

Nχ =
∫

[dχ][dχ̄] e
∫

d2x′χ̄ i� ∂χ Nφ =
∫

[dφ] e−∫
d2x′ 1

2 φÔφ. (20)

The φ-Gaussian integral in (18) is

Nφ exp I (21)

where

I = 1

2

∫
d2x ′ d2x ′′[n(x ′) − iε∂ ′j ]O−1(x ′ − x ′′)[n(x ′′) − iε∂ ′′j ]. (22)

This exponent can be written as I = Inn + Inj + Ijj , where Inj collects the terms involving
one n-field and one j -current, and Inn (resp. Ijj ) is the term containing two n-fields (resp.
two j -currents). In particular, Inn is the same exponent that appears in the two-point fermion
Green function (13), so that,

Inn = β(x − y). (23)

The term containing two j -currents gives

Ijj = β(x − y) − �γ �γ = −1

2
e2

∫
γ

∫
γ

dx ′
µ dx ′′

µe2
π

(x ′ − x ′′). (24)

For the crossed term we have

Inj = i�γ = −i
∫

γ

dx ′
µ εµν∂

′
ν[O−1(x − x ′) − O−1(y − x ′)]

= −i
∫

γ

dx ′
µ εµν

(
x ′

ν − xν

|x − x ′|∂AO−1(|x − x ′|) − x ′
ν − yν

|y − x ′|∂AO−1(|y − x ′|)
)

(25)

where we have used the property that O−1(x) is a function of A = |x|. When the points x and
y are joined by a straight line, �γ vanishes, as dx ′, x ′ − x and x ′ − y are parallel along this
curve.

Let us compute now the large distance approximation for the worldline action, that is, the
string dependent part of (22). To this aim, we make use of the approximation |y − x| � 1/m

(m2 = e2/π) and we consider a smooth string x(s), satisfying

â · dx

ds
> 0 â = y − x

|y − x| . (26)
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We underline that the worldline action is reparametrization invariant, it only depends on the
worldline’s shape. For the class of strings (26) we can redefine the parameter s → s(τ ),
according to

ds

dτ
=

[
â · dx

ds

]−1

. (27)

Of course, in the new parametrization we have

â · dx

dτ
= 1 (28)

which implies

x(τ) = âτ + x + n̂ε(τ ) â · n̂ = 0 (29)

where ε gives the string transverse deformation with respect to the straight line. As the string
runs from x to y, we must have

τ ∈ [0, |y − x|] ε(0) = 0 ε(|y − x|) = 0. (30)

Then, we can write

�γ = −1

2
e2

∫ |y−x|

0
dτ

∫ |y−x|

0
dτ ′ dx

dτ
· dx

dτ ′ e2
π

(|x(τ ′) − x(τ)|). (31)

This is a double-line integral with a kernel which is localized on a scale of the order of 1/m.
Therefore, for a fixed τ , the leading contribution to �γ comes from values of |τ ′ − τ | < ξ ,
where 1/m ∼ ξ 
 |y − x|. On this range, and for smooth strings (ε̇2 
 1), we can make
use, in the integrand of (31), of the approximations

|x(τ ′) − x(τ)|2 ≈ (1 + ε̇2)(τ ′ − τ )2 (32)

and
dx

dτ
· dx

dτ ′ ≈ (1 + ε̇2) (33)

to obtain

�γ ≈ −1

2
e2

∫ |y−x|

0
dτ

∫ τ+ξ

τ−ξ

dτ ′(1 + ε̇2) e2
π

(√
1 + ε̇2|τ ′ − τ |)

= −1

2
e2

∫ |y−x|

0
dτ

∫ +ξ

−ξ

du (1 + ε̇2) e2
π

(√
1 + ε̇2|u|). (34)

The integral over u can be estimated by taking the limit ξ → ∞. Moreover, by means of the
change of variables

√
1 + ε̇2u → u, we get

�γ ≈ −1

2
e2

∫ +∞

−∞
du e2

π

(|u|)
∫ |y−x|

0
dτ

√
1 + ε̇2

≈ −1

2
e2

∫ +∞

−∞
du e2

π

(|u|)
∫ |y−x|

0
dτ

(
1 +

1

2
ε̇2

)
. (35)

Summarizing,

�γ ≈ µ|y − x| +
∫ |y−x|

0
dτ

1

2
µε̇2 (36)

where

µ = −1

2
e2

∫ +∞

−∞
dτe2

π

(|τ |) = e
√

π

4
. (37)



4932 D G Barci et al

Let us turn now to the analysis of the crossed term (25). In general, using (15), this
term contains two contributions coming from the massive and massless Green functions,
respectively.

At large distances, or equivalently, when e2/π is large, the massive -functions in (25)
are well localized near the extrema x or y of the string γ . Thus, as before, the contribution to
(25) coming from this small (almost straight) segment is suppressed. Then, the large distance
behaviour of �γ comes from the massless Green function and reads

�γ ≈ 1

2

∫
γ

dx ′
µ εµν

(
x ′

ν − xν

|x ′ − x|2 − x ′
ν − yν

|x ′ − y|2
)

. (38)

Using εµν∂ν ln |x| = ∂µ arctan(x0/x1), we obtain

�γ ≈ 1
2 ( lim

x′→y
− lim

x′→x
)[arg(x ′ − x) − arg(x ′ − y)]

= 1
2 [(arg(y − x) − lim

x′→x
arg(x ′ − x)) − ( lim

x′→y
arg(x ′ − y) − arg(x − y))] (39)

where the limits are performed along the string γ . We can also write

�γ ≈ − 1
2 (�x + �y) (40)

where �x (resp. �y) is the angle relative to the direction of â of the vector tangent to the
string at the point x (resp. y). We note that the angle � must be considered as positive
(resp. negative) when the tangent vector is obtained from the anticlockwise (resp. clockwise)
rotation of â.

Summarizing the results we have obtained, (18) is given by

1

Nχ

∫
[dχ][dχ̄]χ+(x)χ †

+(y) e
∫

d2x′χ̄ iγµ∂µχ exp I (41)

and at large distances,

I = 2β(x − y) − �γ + i�γ

≈ 2O−1(0) + ln |y − x| − µ|y − x| −
∫ |y−x|

0
dτ

1

2
µε̇2 − i

2
(�x + �y). (42)

4. The gauge invariant, string independent QED2 correlator and its IR behaviour

Now, let us consider the gauge invariant, string independent correlation function (3) for the
Schwinger model. Using (17), (41) and (42), the off-diagonal component in (3), containing
the ψ+ψ

†
+ correlation function, reads

1

Nχ

∫
[dχ][dχ̄]χ+(x)χ †

+(y) e
∫

d2x′χ̄ i� ∂χ

∫
[dγ ] exp I

= 1

Nχ

∫
[dχ][dχ̄]χ+(x)χ †

+(y) e
∫

d2x′χ̄ i� ∂χ exp 2β(x − y)

∫
[dγ ] exp(−�γ + i�γ ).

(43)

It is interesting to note that for every path γ running from x to y, we have a path γ̄ which is
obtained by reflecting γ with respect to the straight line joining x and y. It is easy to see that
�γ̄ = �γ , while �γ̄ = −�γ . Therefore, the γ, γ̄ pair contribution to the path integral is

(exp i�γ + exp −i�γ ) exp −�γ . (44)
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When the χ−(x), χ
†
−(y) correlation function is considered, we have to replace n → −n in

equation (18), which implies �γ → −�γ . Then, from (44), the factor coming from the string
path integral coincides for both correlation functions, and we can write

Ginv(x − y) = SF (x − y) exp 2β(x − y)

∫
[dγ ] exp(−�γ + i�γ ). (45)

Now, in order to obtain the infrared behaviour of Ginv, we will consider the large distance
approximation (42) and the path integral in (45) performed over the subset of smooth strings
characterized by condition (26). On this subset, each equivalence class can be represented
by means of the parametrization (29), that is, we will path integrate over the string transverse
fluctuations ε. We note that in terms of ε, the approximated �γ in (40) is

�γ ≈ 1
2 (ε̇(0) + ε̇(|y − x|)). (46)

After a field renormalization we get

Ginv(x − y) ∼ �x− �y
|x − y| exp(−µ|x − y|) × K(|y − x|)

(47)

K(|y − x|) =
∫

[dε] exp

(
−

∫ |y−x|

0
dτ

1

2
µε̇2 +

i

2
[ε̇(0) + ε̇(|y − x|)]

)

where the ε path integral is performed with the boundary conditions given in (30). Of course,
the saddle point contribution (ε ≡ 0) in (47) corresponds to the asymptotic behaviour of the
string dependent correlator (17) evaluated on a straight line,

GSM(x, γ ) ∼ �x
|x| exp(−µ|x|). (48)

However, the path integral over the string introduces in (45) a nontrivial modification with
respect to the asymptotic behaviour (48). In fact, the integration over the string transverse
fluctuations in (47) is equivalent to a problem of quantum mechanics, that is, the evaluation of
the propagator for a one-dimensional ‘free particle’ with position ε, plus perturbations at the
boundaries. This propagator is computed in the appendix and reads

K(|y − x|) = const

|y − x|1/2
exp

(
1

2µ|y − x|
)

. (49)

Then, at large distances, the gauge invariant, string independent two-point correlation function
receives a factor |x|−1/2 coming from the factor K in equation (49), that is,

Ginv(x) ∼ �x
|x|3/2

exp(−µ|x|). (50)

Note that the behaviour of (48) and (50), corresponding to the string dependent and string
independent correlators, respectively, can be written as

GSM(x, γ ) ∼ − �∂
µ

exp(−µ|x|) Ginv(x) ∼ − �∂
µ

(
exp(−µ|x|)

|x|1/2

)
(51)

while

exp(−µ|x|) ∼
∫

d2p
eipx

(p2 + µ2)3/2

exp(−µ|x|)
|x|1/2

∼
∫

d2p
eipx

(p2 + µ2)
. (52)

As a consequence, we obtain the low-momentum behaviour,

G̃SM(p, γ ) ∼ �p
(p2 + µ2)3/2

G̃inv(p) ∼ �p
(p2 + µ2)

. (53)

From expressions (51) and (53) it is apparent that the string path integration yields a different
exponent with respect to the case where a fixed curve γ is considered.



4934 D G Barci et al

5. Discussion

In this work, we have computed the effective IR worldline action for the string independent
correlator (3) in the context of QED2. We have obtained the IR behaviour for this correlator,
showing that the integration over the string fluctuations leads to an infrared decay which is
faster than that associated with the string dependent one. Of course, in 1D, the dynamical
mass generation for the gauge field prevents singular behaviour of the correlators in (53) when
the limit p → 0 is considered.

In the physically interesting noncompact, parity conserving QED3 models for the normal
phase of HTc superconductors, such dynamical mass generation is absent (see [3] and
references therein). Despite this difference, QED2 and QED3 share some similarities.

Both models display a negative anomalous exponent for the string dependent correlator
(2). In particular, in QED3, some authors [4–7] have obtained the Luttinger-like behaviour (1)
with η0 = −32/(3π2N),N being the number of flavours.

Also, both models contain a dimensionful coupling constant, so that a nontrivial worldline
action is expected in QED3. In particular, based on the string independent QED2 correlator in
equation (51), which contains an additional factor |x|−1/2 coming from the string integration,
we expect that a similar effect could take place in the case of QED3. This would imply a
string independent QED3 correlator with a power-like decaying behaviour which is faster than
the string dependent one. If this is the case, depending on the number of flavours N, the
positive correction to η0 coming from the string average could give a final positive anomalous
dimension.

This leads us to conjecture that the gauge invariant, string independent correlator
(3) is a candidate to represent a sensible electron propagator in QED3 models for HTc
superconductivity.

In this regard, it would be very useful to obtain a reliable approximation scheme where
these points could be checked, as well as to analyse the possibility of deriving the string
averaged correlator by means of a careful coarse graining process in the underlying model for
the phase fluctuations of the superconductor gap.
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Appendix

Here, for completeness, we compute the path integral over the strings in the second line of
(47). In general, we have∫

[dε] exp

(
−

∫ τf

τi

dτ
1

2
µε̇2 +

iλ

2
[ε̇(τi) + ε̇(τf )]

)

= const
∫ n−1∏

k=1

dεk exp


−µ

2

n−1∑
j=0

(εj+1 − εj )
2

δ
+

iλ

2

(
ε1 − ε0

δ
+

εn − εn−1

δ

)


(A.1)
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where ε0 = εi, εn = εf , and the limit δ → 0 (nδ = τf − τi) is understood. We can also
write

(A.1) = const
∫ n−1∏

k=1

dεk

n−1∏
j=0

dpj e− 1
2µ

p2
j δ ei(εj+1−εj )pj e

iλ
2 (

ε1−ε0
δ

+
εn−εn−1

δ
)

= const
∫ n−1∏

k=1

dεk

n−1∏
j=0

dpj e− 1
2µ

p2
j δ e−iε0(p0+ λ

2δ
) eiεn(pn−1+ λ

2δ
)

× eiε1(p0−p1+ λ
2δ ) eiε2(p1−p2) · · · eiεn−2(pn−3−pn−2) eiεn−1(pn−2−pn−1− λ

2δ
)

= const
∫ n−1∏

j=0

dpj e− 1
2µ

p2
j δ e−iε0(p0+ λ

2δ ) eiεn(pn−1+ λ
2δ

)

× δ(p0 − p1 + λ/2δ)δ(p1 − p2) · · · δ(pn−3 − pn−2)δ(pn−2 − pn−1 − λ/2δ).

Now, we can change variables p0 + λ
2δ

→ p0 and pn−1 + λ
2δ

→ pn−1, and integrate the
δ-functions:

(A.1) = const
∫

dp0 dpn−1

n−2∏
j=1

dpjδ(p0 − p1) · · · δ(pn−2 − pn−1)

× e− 1
2µ

p2
j δ e− 1

2µ
(p0− λ

2δ
)2δ e− 1

2µ
(pn−1− λ

2δ
)2δ e−iε0p0 eiεnpn−1

= const
∫

dp0 e− 1
µ

(p0− λ
2δ

)2δ e− 1
2µ

p2
0(n−2)δ eip0(εn−ε0)

= const
∫

dp0 e− 1
2µ

p2
0nδ+p0[ λ

µ
+i(εn−ε0)]− 1

µδ
(λ/2)2

(A.2)

and performing the quadratic integral, we get

(A.1) = const

|τ |1/2
exp

−µ(ε)2

2|τ | exp

(
iλ

ε

τ
+

λ2

2µτ

)
(A.3)

where τ = τf − τi , and ε = εf − εi . Of course, when λ = 0 we have the usual free
particle propagator. In the case we are interested in (see equation (47)) we have λ = 1, τi = 0,

τf = |y − x|, and ε(τf ) = 0 = ε(τi), the path integral factor is real and coincides with the
result showed in (49).
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